From SPARQL to MapReduce: The Journey Using a Nested TripleGroup Algebra

نویسندگان

  • HyeongSik Kim
  • Padmashree Ravindra
  • Kemafor Anyanwu
چکیده

MapReduce-based data processing platforms offer a promising approach for cost-effective and Web-scale processing of Semantic Web data. However, one major challenge is that this computational paradigm leads to high I/O and communication costs when processing tasks with several join operations typical in SPARQL queries. The goal of this demonstration is to show how a system RAPID+, an extension of Apache Pig, enables more efficient SPARQL query processing on MapReduce using an alternative query algebra called the Nested TripleGroup Algebra (NTGA). The demonstration will offer opportunities for users to explore NTGA-Hadoop query plans for different SPARQL query structures as well as explore relationships between query plans based on relational algebra operators and those using NTGA operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Intermediate Algebra for Optimizing RDF Graph Pattern Matching on MapReduce

Existing MapReduce systems support relational style join operators which translate multi-join query plans into several Map-Reduce cycles. This leads to high I/O and communication costs due to the multiple data transfer steps between map and reduce phases. SPARQL graph pattern matching is dominated by join operations, and is unlikely to be efficiently processed using existing techniques. This co...

متن کامل

Scaling Unbound-Property Queries on Big RDF Data Warehouses using MapReduce

Semantic Web technologies are increasingly at the heart of many integrated scientific and general purpose data warehouses. Flexible querying of such diverse data collections with (partially) unknown structures can be enabled using triple patterns with ‘unbound’ properties (edges with don’t care labels). When evaluating such queries using relational joins, intermediate results contain redundancy...

متن کامل

Cascading map-side joins over HBase for scalable join processing

One of the major challenges in large-scale data processing with MapReduce is the smart computation of joins. Since Semantic Web datasets published in RDF have increased rapidly over the last few years, scalable join techniques become an important issue for SPARQL query processing as well. In this paper, we introduce the Map-Side Index Nested Loop Join (MAPSIN join) which combines scalable index...

متن کامل

PigSPARQL: A SPARQL Query Processing Baseline for Big Data

In this paper we discuss PigSPARQL, a competitive yet easy to use SPARQL query processing system on MapReduce that allows adhoc SPARQL query processing on large RDF graphs out of the box. Instead of a direct mapping, PigSPARQL uses the query language of Pig, a data analysis platform on top of Hadoop MapReduce, as an intermediate layer between SPARQL and MapReduce. This additional level of abstr...

متن کامل

MapSQ: A MapReduce-based Framework for SPARQL Queries on GPU

In this paper, we present a MapReduce-based framework for evaluating SPARQL queries on GPU (named MapSQ) to largescale RDF datesets efficiently by applying both high performance. Firstly, we develop a MapReduce-based Join algorithm to handle SPARQL queries in a parallel way. Secondly, we present a coprocessing strategy to manage the process of evaluating queries where CPU is used to assigns sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PVLDB

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011